

IHK Mechatroniker Prüfung 2023 Praktisch

Teil 1: Mechanische Systeme (20 Punkte)

1.1 Zahnradantrieb (8 P)

Ein Förderbandantrieb besteht aus einem kleinen Antriebsrad (Modul m=2, Z=20) und einem großen Abtriebsrad (Modul m=2, Z=60).

- a) Berechnen Sie das Übersetzungsverhältnis i (2 P)
- b) Bei Motordrehzahl n₁=1 500 min⁻¹ und Antriebswelle Drehmoment M₁=45 Nm ermitteln Sie Drehzahl n₂ und Drehmoment M₂ am Abtrieb (4 P)
- c) Nennen Sie drei Einsatzbereiche eines solchen Zahnradgetriebes in der Fördertechnik (2 P)

1.2 Wellen- und Lagerauslegung (6 P)

In einer Montageanlage liegt auf einer Welle eine radiale Einzelkraft F=1 200 N in 40 mm Abstand zur linken Lagerung.

- a) Skizzieren Sie die Lageranordnung (Einzel- und Rillenkugellager) und beschriften Sie Kraftangriffspunkte (2 P)
- b) Berechnen Sie die Schnittkräfte im Lagersitz links und rechts (3 P)
- c) Begründen Sie die Wahl der Kugellager für diese Anwendung (1 P)

1.3 Werkstoffwahl (6 P)

Für einen Kolbenbolzen suchen Sie einen geeigneten Stahl.

- a) Nennen Sie zwei mögliche Werkstoffbezeichnungen (z. B. EN-A1) (2 P)
- b) Vergleichen Sie mechanische Eigenschaften (Zugfestigkeit, Härte) in einer Tabelle (3 P)
- c) Geben Sie eine Wärmebehandlung an, um hohe Verschleißfestigkeit zu erreichen (1 P)

Teil 2: Elektrotechnik und Elektronik (20 Punkte)

2.1 Widerstandsnetzwerk (10 P)

Gegeben ist ein Netzwerk: R1=100 Ω und R2=200 Ω in Serie, parallel zu R3=150 Ω . Eine Spannungsquelle U=24 V ist angeschlossen.

- a) Zeichnen Sie den Schaltplan (2 P)
- b) Berechnen Sie den Gesamtwiderstand Rges (3 P)
- c) Ermitteln Sie den Gesamtstrom Iges und die Ströme in den Teilzweigen (5 P)

2.2 Gleichrichterdimensionierung (6 P)

In einer kleinen Schweißstromquelle wird ein Graetz-Gleichrichter mit Siliziumdioden verwendet, Nennstrom 80 A,

Sperrspannung je Diode 200 V. a) Bestimmen Sie die minimal erforderliche Sperrspannung der Dioden (2 P)

- b) Wählen Sie aus drei vorgeschlagenen Diodentypen (Datenblatt beilegen) den geeignetsten aus und begründen Ihre Wahl (3 P)
- c) Nennen Sie zwei Maßnahmen zur Reduzierung von Oberschwingungen im Gleichrichterkreis (1 P)

2.3 DC-Motorsteuerung (4 P)

Ein fremderregter Gleichstrommotor wird über einen H-Brücken-Umrichter geregelt.

- a) Beschriften Sie die im Anhang gegebene Symbolskizze der H-Brücke (2 P)
- b) Erklären Sie kurz, wie die Drehrichtungsumkehr erfolgt (2 P)

Teil 3: Steuerungs- und Regelungstechnik (20 Punkte)

3.1 SPS-Ablaufplan (8 P)

Eine Abfüllmaschine muss folgende Schritte ausführen:

- Startknopf drückt→Zylinder fährt aus→Füllventil öffnet→Menge 500 ml erreicht→Ventil schließt→Zylinder fährt ein→Ende.
- a) Erstellen Sie einen strukturierten Ablaufplan (Flowchart) mit Ein-/Ausgangsvariablen (5 P)
- b) Listen Sie für jeden Schritt die zugehörigen SPS-Ein- und Ausgänge auf (3 P)

3.2 PID-Reglerauslegung (6 P)

In einer Temperierstation soll die Flüssigkeitstemperatur T von 20 °C auf 60 °C geregelt werden. Die offene Regelstrecke hat eine Güte $G(s)=K/(T\cdot s+1)$ mit K=2, T=30 s.

- a) Berechnen Sie auf Basis der Chien-Hrones-Reswick-Methode die Reglerparameter Kp, Ti, Td (4 P)
- b) Skizzieren Sie das Blockschaltbild der Regelung mit Soll-, Istwert und Regler (2 P)

3.3 Fehlerbehandlungsdiagramm (6 P)

An einer Verpackungsmaschine tritt sporadisch ein Sensorfehler auf.

- a) Erstellen Sie ein Ablaufdiagramm zur automatischen Fehlererkennung und zum Rücksetzen (4 P) b) Nennen Sie zwei peripher angeschlossene Komponenten, die Sie zur Diagnose verwenden (2 P)

Teil 4: Pneumatik und Hydraulik (20 Punkte)

4.1 Pneumatischer Schaltplan (8 P)

Ein Pneumatikzylinder soll nach Druckluftimpuls A ausfahren, nach Impuls B einfahren. Zwischenzylinderstellung halte pneumatisch.

- a) Zeichnen Sie den kompletten Schaltplan (3/2/2-Wegeventile, Linien, Zylinder) (4 P) b) Erläutern Sie kurz die Funktionsweise und nennen Sie die Ventiltypen (2 P)
- c) Geben Sie die notwendigen Kennzeichnungen (ISO-Symbole) an (2 P)
- 4.2 Zylinderkraftberechnung (6 P)

Ein Doppelwirkungszylinder hat Kolbendurchmesser d=50 mm, Druckluft p=6 bar, Leitungslänge 3 m, Druckverlust Δp=0,3 bar. a) Berechnen Sie die Austrittskraft Faus (3 P)

b) Ermitteln Sie die Rückzugskraft Frück unter Berücksichtigung der Kolbenstangenquerschnittsfläche (dStange=20 mm) (3 P)

4.3 Hydraulischer Druckregelkreis (6 P)

In einer Hydraulikanlage soll der Druck konstant 120 bar gehalten werden.

- a) Wählen Sie ein geeignetes Druckbegrenzungsventil aus (Datenblatt beifügen) und begründen Sie Ihre Wahl (3 P) b) Skizzieren Sie den Hydraulikkreis mit Pumpe, Tank, Ventil und Arbeitszylinder (3 P)

Teil 5: Qualitätsmanagement und Fertigungstechnik (20 Punkte) 5.1 Maß- und Geometrieprüfung (8 P)

Ein Präzisionsbauteil hat folgende Toleranzen: Ø20 ±0,02 mm, Planparallelität 0,01 mm.

a) Erstellen Sie ein Messprotokoll für drei Bauteile (je Ø und Plan) (4 P) b) Beschreiben Sie das Vorgehen mit Messmitteln (Messschieber, Tasterprüfgerät) (2 P)

c) Bewerten Sie die Prüfergebnisse und entscheiden Sie über Freigabe oder Nacharbeit (2 P)

5.2 Fertigungskostenkalkulation (6 P)

Ein Frästeil erfordert Rüstzeit 30 min, Stückzeit 10 min, Maschinenstundensatz 60 €/h, Materialkosten 5 €/Stück. a) Kalkulieren Sie die Selbstkosten pro Stück bei einer Losgröße von 20 (3 P)

b) Ermitteln Sie die Kostenreduktion bei Losgröße 50 (3 P)

Für ein mechatronisches Greifersystem sollen Sie eine FMEA durchführen.

5.3 FMEA-Analyse (6 P)

a) Identifizieren Sie drei potenzielle Fehlerarten mit Ursachen und Auswirkungen (3 P) b) Erstellen Sie die FMEA-Tabelle mit Bewertung von Auftretenswahrscheinlichkeit, Bedeutung und

Entdeckungswahrscheinlichkeit (3 P)

Gesamt: 100 Punkte